
Stephen Checkoway

Programming Abstractions
Lecture 36: Types

Static vs. Dynamic types

Dynamically-checked types

Dynamically-typed languages tag all of their values at runtime

‣ In Racket, we can ask what the type of a value is: 

number?, list?, pair?, boolean?, etc.

Functions are forced to check that the types of their input match the expected

type

Scheme and Python are examples of dynamically-typed languages

What does this code do?

(define (mul x y)
 (if (= x 0)
 0
 (* x y)))

(mul 0 'blah)

A. Syntax error

B. Contract violation

C. Runtime error

D. Warning about 'blah

E. Returns 0

4

Run-time type checks
No explicit error checking

(define (mul x y)
 (if (= x 0)
 0
 (* x y)))

(mul 10 'blah)

This gives a contract error:

*: contract violation
 expected: number?
 given: 'blah

Note that the contract error is on *, not mul

Run-time type checks
Explicit error checking

(define (mul x y)
 (cond [(not (number? x)) (error 'mul "not a number: ~s" x)]
 [(not (number? y)) (error 'mul "not a number: ~s" y)]
 [(= x 0) 0]
 [else (* x y)]))

(mul 0 'blah)

This gives a non-contract error:

mul: not a number: blah

Brief aside: Contracts

A contract is a predicate that declares some fact about a value that must be

true

‣ number? — the value is a number

‣ list? — the value is a list

‣ positive? — the value is positive

‣ real? — the value is a real number

‣ any/c — every value satisfies this contract

‣ pair? or cons? — the value is a cons cell

Contract combinators

We can make complex contracts using combinators

‣ (and/c c1 c2 ... cn) — creates a contract that is satisfied only when all

of the ci contracts are satisfied

‣ (or/c c1 c2 ... cn) — creates a contract that is satisfied if any of the

ci contracts are satisfied

‣ (not/c c) — creates a contract that's satisfied if and only if contract c is

not satisfied

‣ (listof c) — creates a contract that the value is a list, each of whose

elements satisfy c

‣ (-> c1 c2 ... cn c-result) — creates a function contract

Contracts on functions
(-> arg1-contract ... argn-contract result-contract)

Specifies contracts for arguments

Specifies a contract for the return value

The runtime checks the contract on calls to functions to ensure arguments

satisfy the contract

On returns, the runtime checks that the result value satisfies the contract

Run-time type checks
Contracts

(define/contract (mul x y)
 (-> number? number? number?) ; x, y, and return value are numbers

 (if (= x 0)
 0
 (* x y)))
(mul 0 'blah)

This gives a contract error:

mul: contract violation
 expected: number?
 given: 'blah
 in: the 2nd argument of
 (-> number? number? number?)

Consider the function (first lst), which contract best describes the

first function?

A. procedure?

B. (-> list? any/c)

C. (-> (not/c empty?) any/c)

D. (-> (and/c list? (not/c empty?)) any/c)

11

Downside of dynamic-typing

Errors like passing and returning the wrong types of values are not caught until

run time, even with contracts

(define/contract (collatz n)
 (-> (and/c positive? integer?) (listof integer?))
 (cond [(= n 1) 1]
 [(odd? n) (cons n (collatz (add1 (* 3 n))))]
 [else (cons n (collatz (/ n 2)))]))

This has a type error, but it won't be caught until runtime 

collatz: broke its own contract

 promised: list?

 produced: '(4 2 . 1)

Statically-checked types

Statically-typed languages compute a static approximation of the runtime

types

The type of an expression is computed from the types of its sub expressions

This can be used to rule out a whole class of type errors at compile time

C, Java, Rust, and Haskell are examples of statically-typed languages

Revisiting our buggy collatz function

#lang plai-typed

(define (collatz [n : number]) : (listof number)
 (cond [(= n 1) 1]
 [(odd? n) (cons n (collatz (add1 (* 3 n))))]
 [else (cons n (collatz (/ n 2)))]))

At compile time, we get an error

typecheck failed: number vs. (listof number) in: …

Quick Haskell introduction

Haskell

Functional programming language

Statically-typed with a really strong type system

Lazy: Values are not computed until they're needed

‣ We won't need this today but one consequence is there isn't really a

distinction between a stream and a list as lists are lazily evaluated

‣ Can make reasoning about code run time a bit difficult

Pure: functions cannot have side effects like printing output or mutation (i.e., no

set!)

Indentation is important !

‣ Haskell programs have a 2D layout constraint which is…unusual

Arithmetic, booleans, lists

Aarithmetic works the way you'd like it to (mostly)!

‣ 3 + 10

‣ (x + 8) * y / 5

Boolean values True and False

‣ Numeric comparisons ==, /=, <, >, etc. return True and False

Lists are homogeneous (meaning all elements have the same type)

‣ [1, 2, 3] —3-element list

‣ [] — empty list

‣ [True, False, False, True] — 4-element list

‣ [True, 1] — type error!

Function application

Rather than (foo x y z) we just write foo x y z

We use parentheses for grouping 

ghci> not True
False
ghci> div 7 3
2
ghci> mod 7 3
1
ghci> mod 7 3 + 5
6
ghci> mod 7 (3 + 5)
7

Types
expr :: type

Every expression has a type

We can be explicit about the type of the expression by writing down its type

ghci> (False || True && False) :: Bool
False
ghci> (5 + 3) :: Int
8

Defining a function

add1 :: Int -> Int
add1 x = x + 1

fib :: Int -> Int
fib n = if n < 2
 then n
 else fib (n - 1) + fib (n - 2)

ghci> [0..10]
[0,1,2,3,4,5,6,7,8,9,10]
ghci> map fib [0..10]
[0,1,1,2,3,5,8,13,21,34,55]

Multiple argument functions

Average of two integers (as an integer, rounding down)

average :: Int -> Int -> Int
average x y = div (x + y) 2

The unusual type Int -> Int -> Int can be read one of two equivalent ways

‣ average takes two Int arguments and returns an Int

‣ Int -> Int -> Int is the same as Int -> (Int -> Int) which says

average take an Int argument and returns a function of type Int -> Int

- This is called Currying (named for mathematician Haskell Curry) and it's

pretty cool

- average 5 returns a one-argument function which computes the average of

its argument and 5

Algebraic Data Types (ADTs)

Algebraic data types

Algebraic data types let us create types from other types

Two ways to combine types:

‣ Product types: these are tuples (think Cartesian products)

- (Int, Bool, String) is a product type where every value is a tuple

containing an int, a boolean, and a string, e.g., (275, True, "Hello")

‣ Sum types (or variant types): every value must be exactly one of the possible

variants

We can combine product and sum types, most commonly as a sum of products

ADTs in Haskell

Tuples we can just use directly

splitListAt :: Int -> [Int] -> ([Int], [Int])
splitListAt n xs = (take n xs, drop n xs)

ghci> splitListAt 5 [0..15]
([0,1,2,3,4],[5,6,7,8,9,10,11,12,13,14,15])

Named product types

We define a new named type using the data keyword

data Foo = Foo String ([Int] -> Int) Bool

This defines a new data type named Foo

This is a product type consisting of a String, a function that takes a list of

Ints and produces an Int, and a Bool

The pink Foo is a constructor and it's how we construct values of type Foo

‣ The constructor didn't need to match the name of the type; we'll see

examples shortly

‣ Foo "hi" length False  
has type Foo

Aside

In order to print out our new types, we need append the line  

 deriving (Show)  
to our data type definition

data Foo = Foo String ([Int] -> Int) Bool  
 deriving (Show)

I'm going to omit this line from all the examples

Sum types

data Bool = True
 | False

This is the standard definition of the Bool type

True and False are 0-argument constructors that create values of type Bool

When a type has one constructor, it's common for the constructor's name to

match the type name

When a type has multiple constructors (i.e., it's a sum type), then the

constructor names describe the variants rather than the overarching data type

